Description: Inference associated with 3impexpbicom . Derived automatically from 3impexpbicomiVD . (Contributed by Alan Sare, 31-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3impexpbicomi.1 | |- ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) |
|
| Assertion | 3impexpbicomi | |- ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impexpbicomi.1 | |- ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) |
|
| 2 | 1 | bicomd | |- ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) |
| 3 | 2 | 3exp | |- ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) |