Description: Inference associated with 3impexpbicom . Derived automatically from 3impexpbicomiVD . (Contributed by Alan Sare, 31-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3impexpbicomi.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) | |
| Assertion | 3impexpbicomi | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impexpbicomi.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜃 ↔ 𝜏 ) ) | |
| 2 | 1 | bicomd | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ( 𝜏 ↔ 𝜃 ) ) |
| 3 | 2 | 3exp | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → ( 𝜏 ↔ 𝜃 ) ) ) ) |