| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
|- 2 e. RR |
| 2 |
|
2lt3 |
|- 2 < 3 |
| 3 |
1 2
|
gtneii |
|- 3 =/= 2 |
| 4 |
|
3prm |
|- 3 e. Prime |
| 5 |
|
2prm |
|- 2 e. Prime |
| 6 |
|
prmrp |
|- ( ( 3 e. Prime /\ 2 e. Prime ) -> ( ( 3 gcd 2 ) = 1 <-> 3 =/= 2 ) ) |
| 7 |
4 5 6
|
mp2an |
|- ( ( 3 gcd 2 ) = 1 <-> 3 =/= 2 ) |
| 8 |
3 7
|
mpbir |
|- ( 3 gcd 2 ) = 1 |
| 9 |
8
|
oveq2i |
|- ( ( 3 lcm 2 ) x. ( 3 gcd 2 ) ) = ( ( 3 lcm 2 ) x. 1 ) |
| 10 |
|
3nn |
|- 3 e. NN |
| 11 |
|
2nn |
|- 2 e. NN |
| 12 |
|
lcmgcdnn |
|- ( ( 3 e. NN /\ 2 e. NN ) -> ( ( 3 lcm 2 ) x. ( 3 gcd 2 ) ) = ( 3 x. 2 ) ) |
| 13 |
10 11 12
|
mp2an |
|- ( ( 3 lcm 2 ) x. ( 3 gcd 2 ) ) = ( 3 x. 2 ) |
| 14 |
10
|
nnzi |
|- 3 e. ZZ |
| 15 |
11
|
nnzi |
|- 2 e. ZZ |
| 16 |
|
lcmcl |
|- ( ( 3 e. ZZ /\ 2 e. ZZ ) -> ( 3 lcm 2 ) e. NN0 ) |
| 17 |
14 15 16
|
mp2an |
|- ( 3 lcm 2 ) e. NN0 |
| 18 |
17
|
nn0cni |
|- ( 3 lcm 2 ) e. CC |
| 19 |
18
|
mulridi |
|- ( ( 3 lcm 2 ) x. 1 ) = ( 3 lcm 2 ) |
| 20 |
9 13 19
|
3eqtr3ri |
|- ( 3 lcm 2 ) = ( 3 x. 2 ) |
| 21 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
| 22 |
20 21
|
eqtri |
|- ( 3 lcm 2 ) = 6 |