| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmcom |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( N lcm M ) ) |
| 2 |
1
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = ( N lcm M ) ) |
| 3 |
|
oveq2 |
|- ( M = 0 -> ( N lcm M ) = ( N lcm 0 ) ) |
| 4 |
|
lcm0val |
|- ( N e. ZZ -> ( N lcm 0 ) = 0 ) |
| 5 |
3 4
|
sylan9eqr |
|- ( ( N e. ZZ /\ M = 0 ) -> ( N lcm M ) = 0 ) |
| 6 |
5
|
adantll |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( N lcm M ) = 0 ) |
| 7 |
2 6
|
eqtrd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = 0 ) |
| 8 |
|
oveq2 |
|- ( N = 0 -> ( M lcm N ) = ( M lcm 0 ) ) |
| 9 |
|
lcm0val |
|- ( M e. ZZ -> ( M lcm 0 ) = 0 ) |
| 10 |
8 9
|
sylan9eqr |
|- ( ( M e. ZZ /\ N = 0 ) -> ( M lcm N ) = 0 ) |
| 11 |
10
|
adantlr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( M lcm N ) = 0 ) |
| 12 |
7 11
|
jaodan |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = 0 ) |
| 13 |
|
0nn0 |
|- 0 e. NN0 |
| 14 |
12 13
|
eqeltrdi |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN0 ) |
| 15 |
|
lcmn0cl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) |
| 16 |
15
|
nnnn0d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN0 ) |
| 17 |
14 16
|
pm2.61dan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |