Metamath Proof Explorer


Theorem lcmcl

Description: Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion lcmcl MNMlcmN0

Proof

Step Hyp Ref Expression
1 lcmcom MNMlcmN=NlcmM
2 1 adantr MNM=0MlcmN=NlcmM
3 oveq2 M=0NlcmM=Nlcm0
4 lcm0val NNlcm0=0
5 3 4 sylan9eqr NM=0NlcmM=0
6 5 adantll MNM=0NlcmM=0
7 2 6 eqtrd MNM=0MlcmN=0
8 oveq2 N=0MlcmN=Mlcm0
9 lcm0val MMlcm0=0
10 8 9 sylan9eqr MN=0MlcmN=0
11 10 adantlr MNN=0MlcmN=0
12 7 11 jaodan MNM=0N=0MlcmN=0
13 0nn0 00
14 12 13 eqeltrdi MNM=0N=0MlcmN0
15 lcmn0cl MN¬M=0N=0MlcmN
16 15 nnnn0d MN¬M=0N=0MlcmN0
17 14 16 pm2.61dan MNMlcmN0