Metamath Proof Explorer


Theorem lcm0val

Description: The value, by convention, of the lcm operator when either operand is 0. (Use lcmcom for a left-hand 0.) (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcm0val MMlcm0=0

Proof

Step Hyp Ref Expression
1 0z 0
2 lcmval M0Mlcm0=ifM=00=00supn|Mn0n<
3 eqid 0=0
4 3 olci M=00=0
5 4 iftruei ifM=00=00supn|Mn0n<=0
6 2 5 eqtrdi M0Mlcm0=0
7 1 6 mpan2 MMlcm0=0