Metamath Proof Explorer


Theorem 3lt9

Description: 3 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion 3lt9
|- 3 < 9

Proof

Step Hyp Ref Expression
1 3lt4
 |-  3 < 4
2 4lt9
 |-  4 < 9
3 3re
 |-  3 e. RR
4 4re
 |-  4 e. RR
5 9re
 |-  9 e. RR
6 3 4 5 lttri
 |-  ( ( 3 < 4 /\ 4 < 9 ) -> 3 < 9 )
7 1 2 6 mp2an
 |-  3 < 9