Metamath Proof Explorer


Theorem 3ndvds4

Description: 3 does not divide 4. (Contributed by AV, 18-Aug-2021)

Ref Expression
Assertion 3ndvds4
|- -. 3 || 4

Proof

Step Hyp Ref Expression
1 3nn
 |-  3 e. NN
2 1nn0
 |-  1 e. NN0
3 1nn
 |-  1 e. NN
4 3t1e3
 |-  ( 3 x. 1 ) = 3
5 4 oveq1i
 |-  ( ( 3 x. 1 ) + 1 ) = ( 3 + 1 )
6 3p1e4
 |-  ( 3 + 1 ) = 4
7 5 6 eqtri
 |-  ( ( 3 x. 1 ) + 1 ) = 4
8 1lt3
 |-  1 < 3
9 1 2 3 7 8 ndvdsi
 |-  -. 3 || 4