Metamath Proof Explorer


Theorem 3ndvds4

Description: 3 does not divide 4. (Contributed by AV, 18-Aug-2021)

Ref Expression
Assertion 3ndvds4 ¬ 3 ∥ 4

Proof

Step Hyp Ref Expression
1 3nn 3 ∈ ℕ
2 1nn0 1 ∈ ℕ0
3 1nn 1 ∈ ℕ
4 3t1e3 ( 3 · 1 ) = 3
5 4 oveq1i ( ( 3 · 1 ) + 1 ) = ( 3 + 1 )
6 3p1e4 ( 3 + 1 ) = 4
7 5 6 eqtri ( ( 3 · 1 ) + 1 ) = 4
8 1lt3 1 < 3
9 1 2 3 7 8 ndvdsi ¬ 3 ∥ 4