Description: Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3o1cs.1 | |- ( ( ph \/ ps \/ ch ) -> th ) |
|
| Assertion | 3o2cs | |- ( ps -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3o1cs.1 | |- ( ( ph \/ ps \/ ch ) -> th ) |
|
| 2 | df-3or | |- ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) ) |
|
| 3 | 2 1 | sylbir | |- ( ( ( ph \/ ps ) \/ ch ) -> th ) |
| 4 | 3 | orcs | |- ( ( ph \/ ps ) -> th ) |
| 5 | 4 | olcs | |- ( ps -> th ) |