Metamath Proof Explorer


Theorem H15NH16TH15IH16

Description: Given 15 hypotheses and a 16th hypothesis, there exists a proof the 15 imply the 16th. (Contributed by Jarvin Udandy, 8-Sep-2016)

Ref Expression
Hypotheses H15NH16TH15IH16.1
|- ph
H15NH16TH15IH16.2
|- ps
H15NH16TH15IH16.3
|- ch
H15NH16TH15IH16.4
|- th
H15NH16TH15IH16.5
|- ta
H15NH16TH15IH16.6
|- et
H15NH16TH15IH16.7
|- ze
H15NH16TH15IH16.8
|- si
H15NH16TH15IH16.9
|- rh
H15NH16TH15IH16.10
|- mu
H15NH16TH15IH16.11
|- la
H15NH16TH15IH16.12
|- ka
H15NH16TH15IH16.13
|- jph
H15NH16TH15IH16.14
|- jps
H15NH16TH15IH16.15
|- jch
H15NH16TH15IH16.16
|- jth
Assertion H15NH16TH15IH16
|- ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ ta ) /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) /\ ka ) /\ jph ) /\ jps ) /\ jch ) -> jth )

Proof

Step Hyp Ref Expression
1 H15NH16TH15IH16.1
 |-  ph
2 H15NH16TH15IH16.2
 |-  ps
3 H15NH16TH15IH16.3
 |-  ch
4 H15NH16TH15IH16.4
 |-  th
5 H15NH16TH15IH16.5
 |-  ta
6 H15NH16TH15IH16.6
 |-  et
7 H15NH16TH15IH16.7
 |-  ze
8 H15NH16TH15IH16.8
 |-  si
9 H15NH16TH15IH16.9
 |-  rh
10 H15NH16TH15IH16.10
 |-  mu
11 H15NH16TH15IH16.11
 |-  la
12 H15NH16TH15IH16.12
 |-  ka
13 H15NH16TH15IH16.13
 |-  jph
14 H15NH16TH15IH16.14
 |-  jps
15 H15NH16TH15IH16.15
 |-  jch
16 H15NH16TH15IH16.16
 |-  jth
17 16 a1i
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) /\ ta ) /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) /\ ka ) /\ jph ) /\ jps ) /\ jch ) -> jth )