Metamath Proof Explorer


Theorem dandysum2p2e4

Description:

CONTRADICTION PROVED AT 1 + 1 = 2 .

Given the right hypotheses we can prove a dandysum of 2+2=4. The qed step is the value '4' in Decimal BEING IMPLIED by the hypotheses.

Note: Values that when added which exceed a 4bit value are not supported.

Note: Digits begin from left (least) to right (greatest). e.g. 1000 would be '1', 0100 would be '2'. 0010 would be '4'.

How to perceive the hypotheses' bits in order: ( th <-> F. ), ( ta <-> F. ) Would be input value X's first bit, and input value Y's first bit.

( et <-> F ), ( ze <-> F. ) would be input value X's second bit, and input value Y's second bit. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses dandysum2p2e4.a
|- ( ph <-> ( th /\ ta ) )
dandysum2p2e4.b
|- ( ps <-> ( et /\ ze ) )
dandysum2p2e4.c
|- ( ch <-> ( si /\ rh ) )
dandysum2p2e4.d
|- ( th <-> F. )
dandysum2p2e4.e
|- ( ta <-> F. )
dandysum2p2e4.f
|- ( et <-> T. )
dandysum2p2e4.g
|- ( ze <-> T. )
dandysum2p2e4.h
|- ( si <-> F. )
dandysum2p2e4.i
|- ( rh <-> F. )
dandysum2p2e4.j
|- ( mu <-> F. )
dandysum2p2e4.k
|- ( la <-> F. )
dandysum2p2e4.l
|- ( ka <-> ( ( th \/_ ta ) \/_ ( th /\ ta ) ) )
dandysum2p2e4.m
|- ( jph <-> ( ( et \/_ ze ) \/ ph ) )
dandysum2p2e4.n
|- ( jps <-> ( ( si \/_ rh ) \/ ps ) )
dandysum2p2e4.o
|- ( jch <-> ( ( mu \/_ la ) \/ ch ) )
Assertion dandysum2p2e4
|- ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph <-> ( th /\ ta ) ) /\ ( ps <-> ( et /\ ze ) ) ) /\ ( ch <-> ( si /\ rh ) ) ) /\ ( th <-> F. ) ) /\ ( ta <-> F. ) ) /\ ( et <-> T. ) ) /\ ( ze <-> T. ) ) /\ ( si <-> F. ) ) /\ ( rh <-> F. ) ) /\ ( mu <-> F. ) ) /\ ( la <-> F. ) ) /\ ( ka <-> ( ( th \/_ ta ) \/_ ( th /\ ta ) ) ) ) /\ ( jph <-> ( ( et \/_ ze ) \/ ph ) ) ) /\ ( jps <-> ( ( si \/_ rh ) \/ ps ) ) ) /\ ( jch <-> ( ( mu \/_ la ) \/ ch ) ) ) -> ( ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) /\ ( jch <-> F. ) ) )

Proof

Step Hyp Ref Expression
1 dandysum2p2e4.a
 |-  ( ph <-> ( th /\ ta ) )
2 dandysum2p2e4.b
 |-  ( ps <-> ( et /\ ze ) )
3 dandysum2p2e4.c
 |-  ( ch <-> ( si /\ rh ) )
4 dandysum2p2e4.d
 |-  ( th <-> F. )
5 dandysum2p2e4.e
 |-  ( ta <-> F. )
6 dandysum2p2e4.f
 |-  ( et <-> T. )
7 dandysum2p2e4.g
 |-  ( ze <-> T. )
8 dandysum2p2e4.h
 |-  ( si <-> F. )
9 dandysum2p2e4.i
 |-  ( rh <-> F. )
10 dandysum2p2e4.j
 |-  ( mu <-> F. )
11 dandysum2p2e4.k
 |-  ( la <-> F. )
12 dandysum2p2e4.l
 |-  ( ka <-> ( ( th \/_ ta ) \/_ ( th /\ ta ) ) )
13 dandysum2p2e4.m
 |-  ( jph <-> ( ( et \/_ ze ) \/ ph ) )
14 dandysum2p2e4.n
 |-  ( jps <-> ( ( si \/_ rh ) \/ ps ) )
15 dandysum2p2e4.o
 |-  ( jch <-> ( ( mu \/_ la ) \/ ch ) )
16 12 biimpi
 |-  ( ka -> ( ( th \/_ ta ) \/_ ( th /\ ta ) ) )
17 4 5 bothfbothsame
 |-  ( th <-> ta )
18 17 aisbnaxb
 |-  -. ( th \/_ ta )
19 4 aisfina
 |-  -. th
20 19 notatnand
 |-  -. ( th /\ ta )
21 18 20 2false
 |-  ( ( th \/_ ta ) <-> ( th /\ ta ) )
22 21 aisbnaxb
 |-  -. ( ( th \/_ ta ) \/_ ( th /\ ta ) )
23 16 22 aibnbaif
 |-  ( ka <-> F. )
24 13 biimpi
 |-  ( jph -> ( ( et \/_ ze ) \/ ph ) )
25 6 7 bothtbothsame
 |-  ( et <-> ze )
26 25 aisbnaxb
 |-  -. ( et \/_ ze )
27 20 1 mtbir
 |-  -. ph
28 26 27 pm3.2ni
 |-  -. ( ( et \/_ ze ) \/ ph )
29 24 28 aibnbaif
 |-  ( jph <-> F. )
30 23 29 pm3.2i
 |-  ( ( ka <-> F. ) /\ ( jph <-> F. ) )
31 6 7 astbstanbst
 |-  ( ( et /\ ze ) <-> T. )
32 2 31 aiffbbtat
 |-  ( ps <-> T. )
33 32 aistia
 |-  ps
34 33 olci
 |-  ( ( si \/_ rh ) \/ ps )
35 34 bitru
 |-  ( ( ( si \/_ rh ) \/ ps ) <-> T. )
36 14 35 aiffbbtat
 |-  ( jps <-> T. )
37 30 36 pm3.2i
 |-  ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) )
38 15 biimpi
 |-  ( jch -> ( ( mu \/_ la ) \/ ch ) )
39 10 11 bothfbothsame
 |-  ( mu <-> la )
40 39 aisbnaxb
 |-  -. ( mu \/_ la )
41 8 aisfina
 |-  -. si
42 41 notatnand
 |-  -. ( si /\ rh )
43 42 3 mtbir
 |-  -. ch
44 40 43 pm3.2ni
 |-  -. ( ( mu \/_ la ) \/ ch )
45 38 44 aibnbaif
 |-  ( jch <-> F. )
46 37 45 pm3.2i
 |-  ( ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) /\ ( jch <-> F. ) )
47 46 a1i
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph <-> ( th /\ ta ) ) /\ ( ps <-> ( et /\ ze ) ) ) /\ ( ch <-> ( si /\ rh ) ) ) /\ ( th <-> F. ) ) /\ ( ta <-> F. ) ) /\ ( et <-> T. ) ) /\ ( ze <-> T. ) ) /\ ( si <-> F. ) ) /\ ( rh <-> F. ) ) /\ ( mu <-> F. ) ) /\ ( la <-> F. ) ) /\ ( ka <-> ( ( th \/_ ta ) \/_ ( th /\ ta ) ) ) ) /\ ( jph <-> ( ( et \/_ ze ) \/ ph ) ) ) /\ ( jps <-> ( ( si \/_ rh ) \/ ps ) ) ) /\ ( jch <-> ( ( mu \/_ la ) \/ ch ) ) ) -> ( ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) /\ ( jch <-> F. ) ) )