Description: Given a is equivalent to b, there exists a proof for (not (a xor b)). (Contributed by Jarvin Udandy, 28-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | aisbnaxb.1 | |- ( ph <-> ps ) |
|
Assertion | aisbnaxb | |- -. ( ph \/_ ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aisbnaxb.1 | |- ( ph <-> ps ) |
|
2 | 1 | notnoti | |- -. -. ( ph <-> ps ) |
3 | df-xor | |- ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) ) |
|
4 | 2 3 | mtbir | |- -. ( ph \/_ ps ) |