Description: If a implies b, then a implies not not b. (Contributed by Jarvin Udandy, 28-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atbiffatnnb | |- ( ( ph -> ps ) -> ( ph -> -. -. ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd | |- ( ph -> ( ps -> ps ) ) |
|
| 2 | notnotb | |- ( ps <-> -. -. ps ) |
|
| 3 | 1 2 | imbitrdi | |- ( ph -> ( ps -> -. -. ps ) ) |
| 4 | 3 | a2i | |- ( ( ph -> ps ) -> ( ph -> -. -. ps ) ) |