Description: If a implies b, then a implies not not b. (Contributed by Jarvin Udandy, 28-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atbiffatnnb | ⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜑 → ¬ ¬ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd | ⊢ ( 𝜑 → ( 𝜓 → 𝜓 ) ) | |
| 2 | notnotb | ⊢ ( 𝜓 ↔ ¬ ¬ 𝜓 ) | |
| 3 | 1 2 | imbitrdi | ⊢ ( 𝜑 → ( 𝜓 → ¬ ¬ 𝜓 ) ) |
| 4 | 3 | a2i | ⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜑 → ¬ ¬ 𝜓 ) ) |