Description: Given a is equivalent to b, there exists a proof for (not (a xor b)). (Contributed by Jarvin Udandy, 28-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | aisbnaxb.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| Assertion | aisbnaxb | ⊢ ¬ ( 𝜑 ⊻ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aisbnaxb.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | 1 | notnoti | ⊢ ¬ ¬ ( 𝜑 ↔ 𝜓 ) |
| 3 | df-xor | ⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ¬ ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 2 3 | mtbir | ⊢ ¬ ( 𝜑 ⊻ 𝜓 ) |