Metamath Proof Explorer


Theorem dandysum2p2e4

Description: CONTRADICTION PROVED AT 1 + 1 = 2 .

Given the right hypotheses we can prove a dandysum of 2+2=4. The qed step is the value '4' in Decimal BEING IMPLIED by the hypotheses.

Note: Values that when added would exceed a 4bit value are not supported.

Note: Digits begin from left (least) to right (greatest). E.g., 1000 would be '1', 0100 would be '2', 0010 would be '4'.

How to perceive the hypotheses' bits in order: ( th <-> F. ), ( ta <-> F. ) Would be input value X's first bit, and input value Y's first bit.

( et <-> F ), ( ze <-> F. ) would be input value X's second bit, and input value Y's second bit. (Contributed by Jarvin Udandy, 6-Sep-2016)

Ref Expression
Hypotheses dandysum2p2e4.a φ θ τ
dandysum2p2e4.b ψ η ζ
dandysum2p2e4.c χ σ ρ
dandysum2p2e4.d θ
dandysum2p2e4.e τ
dandysum2p2e4.f η
dandysum2p2e4.g ζ
dandysum2p2e4.h σ
dandysum2p2e4.i ρ
dandysum2p2e4.j μ
dandysum2p2e4.k λ
dandysum2p2e4.l κ θ τ θ τ
dandysum2p2e4.m No typesetting found for |- ( jph <-> ( ( et \/_ ze ) \/ ph ) ) with typecode |-
dandysum2p2e4.n No typesetting found for |- ( jps <-> ( ( si \/_ rh ) \/ ps ) ) with typecode |-
dandysum2p2e4.o No typesetting found for |- ( jch <-> ( ( mu \/_ la ) \/ ch ) ) with typecode |-
Assertion dandysum2p2e4 Could not format assertion : No typesetting found for |- ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph <-> ( th /\ ta ) ) /\ ( ps <-> ( et /\ ze ) ) ) /\ ( ch <-> ( si /\ rh ) ) ) /\ ( th <-> F. ) ) /\ ( ta <-> F. ) ) /\ ( et <-> T. ) ) /\ ( ze <-> T. ) ) /\ ( si <-> F. ) ) /\ ( rh <-> F. ) ) /\ ( mu <-> F. ) ) /\ ( la <-> F. ) ) /\ ( ka <-> ( ( th \/_ ta ) \/_ ( th /\ ta ) ) ) ) /\ ( jph <-> ( ( et \/_ ze ) \/ ph ) ) ) /\ ( jps <-> ( ( si \/_ rh ) \/ ps ) ) ) /\ ( jch <-> ( ( mu \/_ la ) \/ ch ) ) ) -> ( ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) /\ ( jch <-> F. ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 dandysum2p2e4.a φ θ τ
2 dandysum2p2e4.b ψ η ζ
3 dandysum2p2e4.c χ σ ρ
4 dandysum2p2e4.d θ
5 dandysum2p2e4.e τ
6 dandysum2p2e4.f η
7 dandysum2p2e4.g ζ
8 dandysum2p2e4.h σ
9 dandysum2p2e4.i ρ
10 dandysum2p2e4.j μ
11 dandysum2p2e4.k λ
12 dandysum2p2e4.l κ θ τ θ τ
13 dandysum2p2e4.m Could not format ( jph <-> ( ( et \/_ ze ) \/ ph ) ) : No typesetting found for |- ( jph <-> ( ( et \/_ ze ) \/ ph ) ) with typecode |-
14 dandysum2p2e4.n Could not format ( jps <-> ( ( si \/_ rh ) \/ ps ) ) : No typesetting found for |- ( jps <-> ( ( si \/_ rh ) \/ ps ) ) with typecode |-
15 dandysum2p2e4.o Could not format ( jch <-> ( ( mu \/_ la ) \/ ch ) ) : No typesetting found for |- ( jch <-> ( ( mu \/_ la ) \/ ch ) ) with typecode |-
16 12 biimpi κ θ τ θ τ
17 4 5 bothfbothsame θ τ
18 17 aisbnaxb ¬ θ τ
19 4 aisfina ¬ θ
20 19 notatnand ¬ θ τ
21 18 20 2false θ τ θ τ
22 21 aisbnaxb ¬ θ τ θ τ
23 16 22 aibnbaif κ
24 13 biimpi Could not format ( jph -> ( ( et \/_ ze ) \/ ph ) ) : No typesetting found for |- ( jph -> ( ( et \/_ ze ) \/ ph ) ) with typecode |-
25 6 7 bothtbothsame η ζ
26 25 aisbnaxb ¬ η ζ
27 20 1 mtbir ¬ φ
28 26 27 pm3.2ni ¬ η ζ φ
29 24 28 aibnbaif Could not format ( jph <-> F. ) : No typesetting found for |- ( jph <-> F. ) with typecode |-
30 23 29 pm3.2i Could not format ( ( ka <-> F. ) /\ ( jph <-> F. ) ) : No typesetting found for |- ( ( ka <-> F. ) /\ ( jph <-> F. ) ) with typecode |-
31 6 7 astbstanbst η ζ
32 2 31 aiffbbtat ψ
33 32 aistia ψ
34 33 olci σ ρ ψ
35 34 bitru σ ρ ψ
36 14 35 aiffbbtat Could not format ( jps <-> T. ) : No typesetting found for |- ( jps <-> T. ) with typecode |-
37 30 36 pm3.2i Could not format ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) : No typesetting found for |- ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) with typecode |-
38 15 biimpi Could not format ( jch -> ( ( mu \/_ la ) \/ ch ) ) : No typesetting found for |- ( jch -> ( ( mu \/_ la ) \/ ch ) ) with typecode |-
39 10 11 bothfbothsame μ λ
40 39 aisbnaxb ¬ μ λ
41 8 aisfina ¬ σ
42 41 notatnand ¬ σ ρ
43 42 3 mtbir ¬ χ
44 40 43 pm3.2ni ¬ μ λ χ
45 38 44 aibnbaif Could not format ( jch <-> F. ) : No typesetting found for |- ( jch <-> F. ) with typecode |-
46 37 45 pm3.2i Could not format ( ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) /\ ( jch <-> F. ) ) : No typesetting found for |- ( ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) /\ ( jch <-> F. ) ) with typecode |-
47 46 a1i Could not format ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph <-> ( th /\ ta ) ) /\ ( ps <-> ( et /\ ze ) ) ) /\ ( ch <-> ( si /\ rh ) ) ) /\ ( th <-> F. ) ) /\ ( ta <-> F. ) ) /\ ( et <-> T. ) ) /\ ( ze <-> T. ) ) /\ ( si <-> F. ) ) /\ ( rh <-> F. ) ) /\ ( mu <-> F. ) ) /\ ( la <-> F. ) ) /\ ( ka <-> ( ( th \/_ ta ) \/_ ( th /\ ta ) ) ) ) /\ ( jph <-> ( ( et \/_ ze ) \/ ph ) ) ) /\ ( jps <-> ( ( si \/_ rh ) \/ ps ) ) ) /\ ( jch <-> ( ( mu \/_ la ) \/ ch ) ) ) -> ( ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) /\ ( jch <-> F. ) ) ) : No typesetting found for |- ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph <-> ( th /\ ta ) ) /\ ( ps <-> ( et /\ ze ) ) ) /\ ( ch <-> ( si /\ rh ) ) ) /\ ( th <-> F. ) ) /\ ( ta <-> F. ) ) /\ ( et <-> T. ) ) /\ ( ze <-> T. ) ) /\ ( si <-> F. ) ) /\ ( rh <-> F. ) ) /\ ( mu <-> F. ) ) /\ ( la <-> F. ) ) /\ ( ka <-> ( ( th \/_ ta ) \/_ ( th /\ ta ) ) ) ) /\ ( jph <-> ( ( et \/_ ze ) \/ ph ) ) ) /\ ( jps <-> ( ( si \/_ rh ) \/ ps ) ) ) /\ ( jch <-> ( ( mu \/_ la ) \/ ch ) ) ) -> ( ( ( ( ka <-> F. ) /\ ( jph <-> F. ) ) /\ ( jps <-> T. ) ) /\ ( jch <-> F. ) ) ) with typecode |-