Metamath Proof Explorer
		
		
		
		Description:  Originally part of uniabio .  Convert a theorem about df-iota to one
       about dfiota2 , without ax-10 , ax-11 , ax-12 .  Although, eu6 uses ax-10 and ax-12 .  (Contributed by SN, 23-Nov-2024)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | abbi1sn | |- ( A. x ( ph <-> x = y ) -> { x | ph } = { y } ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abbi |  |-  ( A. x ( ph <-> x = y ) -> { x | ph } = { x | x = y } ) | 
						
							| 2 |  | df-sn |  |-  { y } = { x | x = y } | 
						
							| 3 | 1 2 | eqtr4di |  |-  ( A. x ( ph <-> x = y ) -> { x | ph } = { y } ) |