Metamath Proof Explorer
Description: Originally part of uniabio . Convert a theorem about df-iota to one
about dfiota2 , without ax-10 , ax-11 , ax-12 . Although, eu6 uses ax-10 and ax-12 . (Contributed by SN, 23-Nov-2024)
|
|
Ref |
Expression |
|
Assertion |
abbi1sn |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
abbi1 |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ 𝑥 = 𝑦 } ) |
2 |
|
df-sn |
⊢ { 𝑦 } = { 𝑥 ∣ 𝑥 = 𝑦 } |
3 |
1 2
|
eqtr4di |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |