Metamath Proof Explorer
		
		
		
		Description:  Originally part of uniabio .  Convert a theorem about df-iota to one
       about dfiota2 , without ax-10 , ax-11 , ax-12 .  Although, eu6 uses ax-10 and ax-12 .  (Contributed by SN, 23-Nov-2024)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | abbi1sn | ⊢  ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  { 𝑥  ∣  𝜑 }  =  { 𝑦 } ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abbi | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  { 𝑥  ∣  𝜑 }  =  { 𝑥  ∣  𝑥  =  𝑦 } ) | 
						
							| 2 |  | df-sn | ⊢ { 𝑦 }  =  { 𝑥  ∣  𝑥  =  𝑦 } | 
						
							| 3 | 1 2 | eqtr4di | ⊢ ( ∀ 𝑥 ( 𝜑  ↔  𝑥  =  𝑦 )  →  { 𝑥  ∣  𝜑 }  =  { 𝑦 } ) |