Description: Conditions for a class abstraction to be a set. Remark: This proof is shorter than a proof using abexd . (Contributed by AV, 19-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abex.1 | |- ( ph -> x e. A ) |
|
| abex.2 | |- A e. _V |
||
| Assertion | abex | |- { x | ph } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abex.1 | |- ( ph -> x e. A ) |
|
| 2 | abex.2 | |- A e. _V |
|
| 3 | abss | |- ( { x | ph } C_ A <-> A. x ( ph -> x e. A ) ) |
|
| 4 | 3 1 | mpgbir | |- { x | ph } C_ A |
| 5 | 2 4 | ssexi | |- { x | ph } e. _V |