Metamath Proof Explorer
Description: Conditions for a class abstraction to be a set. Remark: This proof is
shorter than a proof using abexd . (Contributed by AV, 19-Apr-2025)
|
|
Ref |
Expression |
|
Hypotheses |
abex.1 |
|- ( ph -> x e. A ) |
|
|
abex.2 |
|- A e. _V |
|
Assertion |
abex |
|- { x | ph } e. _V |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abex.1 |
|- ( ph -> x e. A ) |
| 2 |
|
abex.2 |
|- A e. _V |
| 3 |
1
|
abssi |
|- { x | ph } C_ A |
| 4 |
2 3
|
ssexi |
|- { x | ph } e. _V |