Description: Abelian groups (and therefore also groups and monoids) exist. (Contributed by AV, 29-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | abln0 | |- Abel =/= (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | |- i e. _V |
|
2 | eqid | |- { <. ( Base ` ndx ) , { i } >. , <. ( +g ` ndx ) , { <. <. i , i >. , i >. } >. } = { <. ( Base ` ndx ) , { i } >. , <. ( +g ` ndx ) , { <. <. i , i >. , i >. } >. } |
|
3 | 2 | abl1 | |- ( i e. _V -> { <. ( Base ` ndx ) , { i } >. , <. ( +g ` ndx ) , { <. <. i , i >. , i >. } >. } e. Abel ) |
4 | ne0i | |- ( { <. ( Base ` ndx ) , { i } >. , <. ( +g ` ndx ) , { <. <. i , i >. , i >. } >. } e. Abel -> Abel =/= (/) ) |
|
5 | 1 3 4 | mp2b | |- Abel =/= (/) |