Metamath Proof Explorer


Theorem abs2difi

Description: Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007)

Ref Expression
Hypotheses abs2difi.1
|- A e. CC
abs2difi.2
|- B e. CC
Assertion abs2difi
|- ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) )

Proof

Step Hyp Ref Expression
1 abs2difi.1
 |-  A e. CC
2 abs2difi.2
 |-  B e. CC
3 abs2dif
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) ) )
4 1 2 3 mp2an
 |-  ( ( abs ` A ) - ( abs ` B ) ) <_ ( abs ` ( A - B ) )