Metamath Proof Explorer
Description: Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007)
|
|
Ref |
Expression |
|
Hypotheses |
abs2difi.1 |
⊢ 𝐴 ∈ ℂ |
|
|
abs2difi.2 |
⊢ 𝐵 ∈ ℂ |
|
Assertion |
abs2difi |
⊢ ( ( abs ‘ 𝐴 ) − ( abs ‘ 𝐵 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
abs2difi.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
abs2difi.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
abs2dif |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) − ( abs ‘ 𝐵 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( ( abs ‘ 𝐴 ) − ( abs ‘ 𝐵 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) |