Metamath Proof Explorer


Theorem absdivd

Description: Absolute value distributes over division. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1
|- ( ph -> A e. CC )
abssubd.2
|- ( ph -> B e. CC )
absdivd.2
|- ( ph -> B =/= 0 )
Assertion absdivd
|- ( ph -> ( abs ` ( A / B ) ) = ( ( abs ` A ) / ( abs ` B ) ) )

Proof

Step Hyp Ref Expression
1 abscld.1
 |-  ( ph -> A e. CC )
2 abssubd.2
 |-  ( ph -> B e. CC )
3 absdivd.2
 |-  ( ph -> B =/= 0 )
4 absdiv
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( abs ` ( A / B ) ) = ( ( abs ` A ) / ( abs ` B ) ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( abs ` ( A / B ) ) = ( ( abs ` A ) / ( abs ` B ) ) )