Metamath Proof Explorer


Theorem absex

Description: The absolute value function is a set. (Contributed by SN, 5-Jun-2025)

Ref Expression
Assertion absex
|- abs e. _V

Proof

Step Hyp Ref Expression
1 absf
 |-  abs : CC --> RR
2 cnex
 |-  CC e. _V
3 reex
 |-  RR e. _V
4 fex2
 |-  ( ( abs : CC --> RR /\ CC e. _V /\ RR e. _V ) -> abs e. _V )
5 1 2 3 4 mp3an
 |-  abs e. _V