Metamath Proof Explorer


Theorem absex

Description: The absolute value function is a set. (Contributed by SN, 5-Jun-2025)

Ref Expression
Assertion absex abs ∈ V

Proof

Step Hyp Ref Expression
1 absf abs : ℂ ⟶ ℝ
2 cnex ℂ ∈ V
3 reex ℝ ∈ V
4 fex2 ( ( abs : ℂ ⟶ ℝ ∧ ℂ ∈ V ∧ ℝ ∈ V ) → abs ∈ V )
5 1 2 3 4 mp3an abs ∈ V