Step |
Hyp |
Ref |
Expression |
1 |
|
cjneg |
|- ( A e. CC -> ( * ` -u A ) = -u ( * ` A ) ) |
2 |
1
|
oveq2d |
|- ( A e. CC -> ( -u A x. ( * ` -u A ) ) = ( -u A x. -u ( * ` A ) ) ) |
3 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
4 |
|
mul2neg |
|- ( ( A e. CC /\ ( * ` A ) e. CC ) -> ( -u A x. -u ( * ` A ) ) = ( A x. ( * ` A ) ) ) |
5 |
3 4
|
mpdan |
|- ( A e. CC -> ( -u A x. -u ( * ` A ) ) = ( A x. ( * ` A ) ) ) |
6 |
2 5
|
eqtrd |
|- ( A e. CC -> ( -u A x. ( * ` -u A ) ) = ( A x. ( * ` A ) ) ) |
7 |
6
|
fveq2d |
|- ( A e. CC -> ( sqrt ` ( -u A x. ( * ` -u A ) ) ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
8 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
9 |
|
absval |
|- ( -u A e. CC -> ( abs ` -u A ) = ( sqrt ` ( -u A x. ( * ` -u A ) ) ) ) |
10 |
8 9
|
syl |
|- ( A e. CC -> ( abs ` -u A ) = ( sqrt ` ( -u A x. ( * ` -u A ) ) ) ) |
11 |
|
absval |
|- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
12 |
7 10 11
|
3eqtr4d |
|- ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) ) |