Description: A negative number is the negative of its own absolute value. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resqrcld.1 | |- ( ph -> A e. RR ) |
|
| absnidd.2 | |- ( ph -> A <_ 0 ) |
||
| Assertion | absnidd | |- ( ph -> ( abs ` A ) = -u A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrcld.1 | |- ( ph -> A e. RR ) |
|
| 2 | absnidd.2 | |- ( ph -> A <_ 0 ) |
|
| 3 | absnid | |- ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( abs ` A ) = -u A ) |