Metamath Proof Explorer


Theorem acsficld

Description: In an algebraic closure system, the closure of a set is the union of the closures of its finite subsets. Deduction form of acsficl . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses acsficld.1
|- ( ph -> A e. ( ACS ` X ) )
acsficld.2
|- N = ( mrCls ` A )
acsficld.3
|- ( ph -> S C_ X )
Assertion acsficld
|- ( ph -> ( N ` S ) = U. ( N " ( ~P S i^i Fin ) ) )

Proof

Step Hyp Ref Expression
1 acsficld.1
 |-  ( ph -> A e. ( ACS ` X ) )
2 acsficld.2
 |-  N = ( mrCls ` A )
3 acsficld.3
 |-  ( ph -> S C_ X )
4 2 acsficl
 |-  ( ( A e. ( ACS ` X ) /\ S C_ X ) -> ( N ` S ) = U. ( N " ( ~P S i^i Fin ) ) )
5 1 3 4 syl2anc
 |-  ( ph -> ( N ` S ) = U. ( N " ( ~P S i^i Fin ) ) )