Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 23-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ad5ant.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
| Assertion | ad5ant125 | |- ( ( ( ( ( ph /\ ps ) /\ ta ) /\ et ) /\ ch ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad5ant.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
| 2 | 1 | 3expia | |- ( ( ph /\ ps ) -> ( ch -> th ) ) |
| 3 | 2 | 2a1d | |- ( ( ph /\ ps ) -> ( ta -> ( et -> ( ch -> th ) ) ) ) |
| 4 | 3 | imp41 | |- ( ( ( ( ( ph /\ ps ) /\ ta ) /\ et ) /\ ch ) -> th ) |