Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004) (Proof shortened by Wolf Lammen, 4-Dec-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | adantr2.1 | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
|
| Assertion | adantrll | |- ( ( ph /\ ( ( ta /\ ps ) /\ ch ) ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adantr2.1 | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
|
| 2 | simpr | |- ( ( ta /\ ps ) -> ps ) |
|
| 3 | 2 1 | sylanr1 | |- ( ( ph /\ ( ( ta /\ ps ) /\ ch ) ) -> th ) |