Description: A syllogism inference. (Contributed by NM, 9-Apr-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylanr1.1 | |- ( ph -> ch ) |
|
sylanr1.2 | |- ( ( ps /\ ( ch /\ th ) ) -> ta ) |
||
Assertion | sylanr1 | |- ( ( ps /\ ( ph /\ th ) ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanr1.1 | |- ( ph -> ch ) |
|
2 | sylanr1.2 | |- ( ( ps /\ ( ch /\ th ) ) -> ta ) |
|
3 | 1 | anim1i | |- ( ( ph /\ th ) -> ( ch /\ th ) ) |
4 | 3 2 | sylan2 | |- ( ( ps /\ ( ph /\ th ) ) -> ta ) |