Metamath Proof Explorer


Theorem sylanr1

Description: A syllogism inference. (Contributed by NM, 9-Apr-2005)

Ref Expression
Hypotheses sylanr1.1
|- ( ph -> ch )
sylanr1.2
|- ( ( ps /\ ( ch /\ th ) ) -> ta )
Assertion sylanr1
|- ( ( ps /\ ( ph /\ th ) ) -> ta )

Proof

Step Hyp Ref Expression
1 sylanr1.1
 |-  ( ph -> ch )
2 sylanr1.2
 |-  ( ( ps /\ ( ch /\ th ) ) -> ta )
3 1 anim1i
 |-  ( ( ph /\ th ) -> ( ch /\ th ) )
4 3 2 sylan2
 |-  ( ( ps /\ ( ph /\ th ) ) -> ta )