Metamath Proof Explorer


Theorem add42d

Description: Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addd.1
|- ( ph -> A e. CC )
addd.2
|- ( ph -> B e. CC )
addd.3
|- ( ph -> C e. CC )
add4d.4
|- ( ph -> D e. CC )
Assertion add42d
|- ( ph -> ( ( A + B ) + ( C + D ) ) = ( ( A + C ) + ( D + B ) ) )

Proof

Step Hyp Ref Expression
1 addd.1
 |-  ( ph -> A e. CC )
2 addd.2
 |-  ( ph -> B e. CC )
3 addd.3
 |-  ( ph -> C e. CC )
4 add4d.4
 |-  ( ph -> D e. CC )
5 add42
 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) + ( C + D ) ) = ( ( A + C ) + ( D + B ) ) )
6 1 2 3 4 5 syl22anc
 |-  ( ph -> ( ( A + B ) + ( C + D ) ) = ( ( A + C ) + ( D + B ) ) )