Metamath Proof Explorer


Theorem addcomnni

Description: Commutative law for addition. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Hypotheses addcomnni.1
|- A e. NN
addcomnni.2
|- B e. NN
Assertion addcomnni
|- ( A + B ) = ( B + A )

Proof

Step Hyp Ref Expression
1 addcomnni.1
 |-  A e. NN
2 addcomnni.2
 |-  B e. NN
3 1 nncni
 |-  A e. CC
4 2 nncni
 |-  B e. CC
5 3 4 addcomi
 |-  ( A + B ) = ( B + A )