Metamath Proof Explorer


Theorem mulassnni

Description: Associative law for multiplication. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Hypotheses mulassnni.1
|- A e. NN
mulassnni.2
|- B e. NN
mulassnni.3
|- C e. NN
Assertion mulassnni
|- ( ( A x. B ) x. C ) = ( A x. ( B x. C ) )

Proof

Step Hyp Ref Expression
1 mulassnni.1
 |-  A e. NN
2 mulassnni.2
 |-  B e. NN
3 mulassnni.3
 |-  C e. NN
4 1 nncni
 |-  A e. CC
5 2 nncni
 |-  B e. CC
6 3 nncni
 |-  C e. CC
7 4 5 6 mulassi
 |-  ( ( A x. B ) x. C ) = ( A x. ( B x. C ) )