Metamath Proof Explorer


Theorem mulassnni

Description: Associative law for multiplication. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Hypotheses mulassnni.1 𝐴 ∈ ℕ
mulassnni.2 𝐵 ∈ ℕ
mulassnni.3 𝐶 ∈ ℕ
Assertion mulassnni ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) )

Proof

Step Hyp Ref Expression
1 mulassnni.1 𝐴 ∈ ℕ
2 mulassnni.2 𝐵 ∈ ℕ
3 mulassnni.3 𝐶 ∈ ℕ
4 1 nncni 𝐴 ∈ ℂ
5 2 nncni 𝐵 ∈ ℂ
6 3 nncni 𝐶 ∈ ℂ
7 4 5 6 mulassi ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) )