Metamath Proof Explorer
Description: Associative law for multiplication. (Contributed by metakunt, 25-Apr-2024)
|
|
Ref |
Expression |
|
Hypotheses |
mulassnni.1 |
⊢ 𝐴 ∈ ℕ |
|
|
mulassnni.2 |
⊢ 𝐵 ∈ ℕ |
|
|
mulassnni.3 |
⊢ 𝐶 ∈ ℕ |
|
Assertion |
mulassnni |
⊢ ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mulassnni.1 |
⊢ 𝐴 ∈ ℕ |
2 |
|
mulassnni.2 |
⊢ 𝐵 ∈ ℕ |
3 |
|
mulassnni.3 |
⊢ 𝐶 ∈ ℕ |
4 |
1
|
nncni |
⊢ 𝐴 ∈ ℂ |
5 |
2
|
nncni |
⊢ 𝐵 ∈ ℂ |
6 |
3
|
nncni |
⊢ 𝐶 ∈ ℂ |
7 |
4 5 6
|
mulassi |
⊢ ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) |