Metamath Proof Explorer


Theorem adh-jarrsc

Description: Replacement of a nested antecedent with an outer antecedent. Commuted simplificated form of elimination of a nested antecedent. Also holds intuitionistically. Polish prefix notation: CCCpqrCsCqr . (Contributed by ADH, 10-Nov-2023) (Proof modification is discouraged.)

Ref Expression
Assertion adh-jarrsc
|- ( ( ( ph -> ps ) -> ch ) -> ( th -> ( ps -> ch ) ) )

Proof

Step Hyp Ref Expression
1 jarr
 |-  ( ( ( ph -> ps ) -> ch ) -> ( ps -> ch ) )
2 ax-1
 |-  ( ( ( ( ph -> ps ) -> ch ) -> ( ps -> ch ) ) -> ( th -> ( ( ( ph -> ps ) -> ch ) -> ( ps -> ch ) ) ) )
3 1 2 ax-mp
 |-  ( th -> ( ( ( ph -> ps ) -> ch ) -> ( ps -> ch ) ) )
4 pm2.04
 |-  ( ( th -> ( ( ( ph -> ps ) -> ch ) -> ( ps -> ch ) ) ) -> ( ( ( ph -> ps ) -> ch ) -> ( th -> ( ps -> ch ) ) ) )
5 3 4 ax-mp
 |-  ( ( ( ph -> ps ) -> ch ) -> ( th -> ( ps -> ch ) ) )