Metamath Proof Explorer


Theorem al3im

Description: Version of ax-4 for a nested implication. (Contributed by RP, 13-Apr-2020)

Ref Expression
Assertion al3im
|- ( A. x ( ph -> ( ps -> ( ch -> th ) ) ) -> ( A. x ph -> ( A. x ps -> ( A. x ch -> A. x th ) ) ) )

Proof

Step Hyp Ref Expression
1 alim
 |-  ( A. x ( ph -> ( ps -> ( ch -> th ) ) ) -> ( A. x ph -> A. x ( ps -> ( ch -> th ) ) ) )
2 al2im
 |-  ( A. x ( ps -> ( ch -> th ) ) -> ( A. x ps -> ( A. x ch -> A. x th ) ) )
3 1 2 syl6
 |-  ( A. x ( ph -> ( ps -> ( ch -> th ) ) ) -> ( A. x ph -> ( A. x ps -> ( A. x ch -> A. x th ) ) ) )