Description: Version of ax-4 for a nested implication. (Contributed by RP, 13-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | al3im | |- ( A. x ( ph -> ( ps -> ( ch -> th ) ) ) -> ( A. x ph -> ( A. x ps -> ( A. x ch -> A. x th ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alim | |- ( A. x ( ph -> ( ps -> ( ch -> th ) ) ) -> ( A. x ph -> A. x ( ps -> ( ch -> th ) ) ) ) |
|
2 | al2im | |- ( A. x ( ps -> ( ch -> th ) ) -> ( A. x ps -> ( A. x ch -> A. x th ) ) ) |
|
3 | 1 2 | syl6 | |- ( A. x ( ph -> ( ps -> ( ch -> th ) ) ) -> ( A. x ph -> ( A. x ps -> ( A. x ch -> A. x th ) ) ) ) |