Description: Version of ax-4 for a nested implication. (Contributed by RP, 13-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | al3im | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) → ( ∀ 𝑥 𝜑 → ( ∀ 𝑥 𝜓 → ( ∀ 𝑥 𝜒 → ∀ 𝑥 𝜃 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alim | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) → ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) ) | |
2 | al2im | ⊢ ( ∀ 𝑥 ( 𝜓 → ( 𝜒 → 𝜃 ) ) → ( ∀ 𝑥 𝜓 → ( ∀ 𝑥 𝜒 → ∀ 𝑥 𝜃 ) ) ) | |
3 | 1 2 | syl6 | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) → ( ∀ 𝑥 𝜑 → ( ∀ 𝑥 𝜓 → ( ∀ 𝑥 𝜒 → ∀ 𝑥 𝜃 ) ) ) ) |