Description: Two ways of expressing the intersection of images of a class. (Contributed by RP, 13-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intima0 | ⊢ ∩ 𝑎 ∈ 𝐴 ( 𝑎 “ 𝐵 ) = ∩ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = ( 𝑎 “ 𝐵 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑎 ∈ V | |
| 2 | 1 | imaex | ⊢ ( 𝑎 “ 𝐵 ) ∈ V |
| 3 | 2 | dfiin2 | ⊢ ∩ 𝑎 ∈ 𝐴 ( 𝑎 “ 𝐵 ) = ∩ { 𝑥 ∣ ∃ 𝑎 ∈ 𝐴 𝑥 = ( 𝑎 “ 𝐵 ) } |