Metamath Proof Explorer


Theorem elimaint

Description: Element of image of intersection. (Contributed by RP, 13-Apr-2020)

Ref Expression
Assertion elimaint ( 𝑦 ∈ ( 𝐴𝐵 ) ↔ ∃ 𝑏𝐵𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 )

Proof

Step Hyp Ref Expression
1 vex 𝑦 ∈ V
2 1 elima ( 𝑦 ∈ ( 𝐴𝐵 ) ↔ ∃ 𝑏𝐵 𝑏 𝐴 𝑦 )
3 df-br ( 𝑏 𝐴 𝑦 ↔ ⟨ 𝑏 , 𝑦 ⟩ ∈ 𝐴 )
4 opex 𝑏 , 𝑦 ⟩ ∈ V
5 4 elint2 ( ⟨ 𝑏 , 𝑦 ⟩ ∈ 𝐴 ↔ ∀ 𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 )
6 3 5 bitri ( 𝑏 𝐴 𝑦 ↔ ∀ 𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 )
7 6 rexbii ( ∃ 𝑏𝐵 𝑏 𝐴 𝑦 ↔ ∃ 𝑏𝐵𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 )
8 2 7 bitri ( 𝑦 ∈ ( 𝐴𝐵 ) ↔ ∃ 𝑏𝐵𝑎𝐴𝑏 , 𝑦 ⟩ ∈ 𝑎 )