Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Additional statements on relations and subclasses
elimaint
Next ⟩
cnviun
Metamath Proof Explorer
Ascii
Unicode
Theorem
elimaint
Description:
Element of image of intersection.
(Contributed by
RP
, 13-Apr-2020)
Ref
Expression
Assertion
elimaint
⊢
y
∈
⋂
A
B
↔
∃
b
∈
B
∀
a
∈
A
b
y
∈
a
Proof
Step
Hyp
Ref
Expression
1
vex
⊢
y
∈
V
2
1
elima
⊢
y
∈
⋂
A
B
↔
∃
b
∈
B
b
⋂
A
y
3
df-br
⊢
b
⋂
A
y
↔
b
y
∈
⋂
A
4
opex
⊢
b
y
∈
V
5
4
elint2
⊢
b
y
∈
⋂
A
↔
∀
a
∈
A
b
y
∈
a
6
3
5
bitri
⊢
b
⋂
A
y
↔
∀
a
∈
A
b
y
∈
a
7
6
rexbii
⊢
∃
b
∈
B
b
⋂
A
y
↔
∃
b
∈
B
∀
a
∈
A
b
y
∈
a
8
2
7
bitri
⊢
y
∈
⋂
A
B
↔
∃
b
∈
B
∀
a
∈
A
b
y
∈
a