Metamath Proof Explorer


Theorem elimaint

Description: Element of image of intersection. (Contributed by RP, 13-Apr-2020)

Ref Expression
Assertion elimaint y A B b B a A b y a

Proof

Step Hyp Ref Expression
1 vex y V
2 1 elima y A B b B b A y
3 df-br b A y b y A
4 opex b y V
5 4 elint2 b y A a A b y a
6 3 5 bitri b A y a A b y a
7 6 rexbii b B b A y b B a A b y a
8 2 7 bitri y A B b B a A b y a