Metamath Proof Explorer


Theorem cnviun

Description: Converse of indexed union. (Contributed by RP, 20-Jun-2020)

Ref Expression
Assertion cnviun 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵

Proof

Step Hyp Ref Expression
1 relcnv Rel 𝑥𝐴 𝐵
2 reliun ( Rel 𝑥𝐴 𝐵 ↔ ∀ 𝑥𝐴 Rel 𝐵 )
3 relcnv Rel 𝐵
4 3 a1i ( 𝑥𝐴 → Rel 𝐵 )
5 2 4 mprgbir Rel 𝑥𝐴 𝐵
6 vex 𝑦 ∈ V
7 vex 𝑧 ∈ V
8 6 7 opelcnv ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐵 ↔ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐵 )
9 8 bicomi ( ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝐵 ↔ ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝐵 )
10 9 rexbii ( ∃ 𝑥𝐴𝑧 , 𝑦 ⟩ ∈ 𝐵 ↔ ∃ 𝑥𝐴𝑦 , 𝑧 ⟩ ∈ 𝐵 )
11 6 7 opelcnv ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝑥𝐴 𝐵 )
12 eliun ( ⟨ 𝑧 , 𝑦 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴𝑧 , 𝑦 ⟩ ∈ 𝐵 )
13 11 12 bitri ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴𝑧 , 𝑦 ⟩ ∈ 𝐵 )
14 eliun ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴𝑦 , 𝑧 ⟩ ∈ 𝐵 )
15 10 13 14 3bitr4i ( ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨ 𝑦 , 𝑧 ⟩ ∈ 𝑥𝐴 𝐵 )
16 1 5 15 eqrelriiv 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵