| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-iun | 
							⊢ ∪  𝑥  ∈  𝐴 𝐵  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 }  | 
						
						
							| 2 | 
							
								1
							 | 
							releqi | 
							⊢ ( Rel  ∪  𝑥  ∈  𝐴 𝐵  ↔  Rel  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 } )  | 
						
						
							| 3 | 
							
								
							 | 
							df-rel | 
							⊢ ( Rel  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 }  ↔  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 }  ⊆  ( V  ×  V ) )  | 
						
						
							| 4 | 
							
								
							 | 
							abss | 
							⊢ ( { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 }  ⊆  ( V  ×  V )  ↔  ∀ 𝑦 ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  →  𝑦  ∈  ( V  ×  V ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							df-rel | 
							⊢ ( Rel  𝐵  ↔  𝐵  ⊆  ( V  ×  V ) )  | 
						
						
							| 6 | 
							
								
							 | 
							df-ss | 
							⊢ ( 𝐵  ⊆  ( V  ×  V )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝑦  ∈  ( V  ×  V ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							bitri | 
							⊢ ( Rel  𝐵  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝑦  ∈  ( V  ×  V ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							ralbii | 
							⊢ ( ∀ 𝑥  ∈  𝐴 Rel  𝐵  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝑦  ∈  ( V  ×  V ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ralcom4 | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝑦  ∈  ( V  ×  V ) )  ↔  ∀ 𝑦 ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  →  𝑦  ∈  ( V  ×  V ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							r19.23v | 
							⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  →  𝑦  ∈  ( V  ×  V ) )  ↔  ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  →  𝑦  ∈  ( V  ×  V ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							albii | 
							⊢ ( ∀ 𝑦 ∀ 𝑥  ∈  𝐴 ( 𝑦  ∈  𝐵  →  𝑦  ∈  ( V  ×  V ) )  ↔  ∀ 𝑦 ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  →  𝑦  ∈  ( V  ×  V ) ) )  | 
						
						
							| 12 | 
							
								8 9 11
							 | 
							3bitri | 
							⊢ ( ∀ 𝑥  ∈  𝐴 Rel  𝐵  ↔  ∀ 𝑦 ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  →  𝑦  ∈  ( V  ×  V ) ) )  | 
						
						
							| 13 | 
							
								4 12
							 | 
							bitr4i | 
							⊢ ( { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 }  ⊆  ( V  ×  V )  ↔  ∀ 𝑥  ∈  𝐴 Rel  𝐵 )  | 
						
						
							| 14 | 
							
								2 3 13
							 | 
							3bitri | 
							⊢ ( Rel  ∪  𝑥  ∈  𝐴 𝐵  ↔  ∀ 𝑥  ∈  𝐴 Rel  𝐵 )  |