Description: An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008) (Proof shortened by SN, 2-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reliun | |- ( Rel U_ x e. A B <-> A. x e. A Rel B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunss | |- ( U_ x e. A B C_ ( _V X. _V ) <-> A. x e. A B C_ ( _V X. _V ) ) |
|
| 2 | df-rel | |- ( Rel U_ x e. A B <-> U_ x e. A B C_ ( _V X. _V ) ) |
|
| 3 | df-rel | |- ( Rel B <-> B C_ ( _V X. _V ) ) |
|
| 4 | 3 | ralbii | |- ( A. x e. A Rel B <-> A. x e. A B C_ ( _V X. _V ) ) |
| 5 | 1 2 4 | 3bitr4i | |- ( Rel U_ x e. A B <-> A. x e. A Rel B ) |