Metamath Proof Explorer


Theorem reliun

Description: An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008) (Proof shortened by SN, 2-Feb-2025)

Ref Expression
Assertion reliun
|- ( Rel U_ x e. A B <-> A. x e. A Rel B )

Proof

Step Hyp Ref Expression
1 iunss
 |-  ( U_ x e. A B C_ ( _V X. _V ) <-> A. x e. A B C_ ( _V X. _V ) )
2 df-rel
 |-  ( Rel U_ x e. A B <-> U_ x e. A B C_ ( _V X. _V ) )
3 df-rel
 |-  ( Rel B <-> B C_ ( _V X. _V ) )
4 3 ralbii
 |-  ( A. x e. A Rel B <-> A. x e. A B C_ ( _V X. _V ) )
5 1 2 4 3bitr4i
 |-  ( Rel U_ x e. A B <-> A. x e. A Rel B )