Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | reliin | ⊢ ( ∃ 𝑥 ∈ 𝐴 Rel 𝐵 → Rel ∩ 𝑥 ∈ 𝐴 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinss | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ ( V × V ) → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ( V × V ) ) | |
2 | df-rel | ⊢ ( Rel 𝐵 ↔ 𝐵 ⊆ ( V × V ) ) | |
3 | 2 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝐵 ⊆ ( V × V ) ) |
4 | df-rel | ⊢ ( Rel ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ( V × V ) ) | |
5 | 1 3 4 | 3imtr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 Rel 𝐵 → Rel ∩ 𝑥 ∈ 𝐴 𝐵 ) |