| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alephfplem.1 |  |-  H = ( rec ( aleph , _om ) |` _om ) | 
						
							| 2 |  | omex |  |-  _om e. _V | 
						
							| 3 |  | fr0g |  |-  ( _om e. _V -> ( ( rec ( aleph , _om ) |` _om ) ` (/) ) = _om ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( ( rec ( aleph , _om ) |` _om ) ` (/) ) = _om | 
						
							| 5 | 1 | fveq1i |  |-  ( H ` (/) ) = ( ( rec ( aleph , _om ) |` _om ) ` (/) ) | 
						
							| 6 |  | aleph0 |  |-  ( aleph ` (/) ) = _om | 
						
							| 7 | 4 5 6 | 3eqtr4i |  |-  ( H ` (/) ) = ( aleph ` (/) ) | 
						
							| 8 |  | alephfnon |  |-  aleph Fn On | 
						
							| 9 |  | 0elon |  |-  (/) e. On | 
						
							| 10 |  | fnfvelrn |  |-  ( ( aleph Fn On /\ (/) e. On ) -> ( aleph ` (/) ) e. ran aleph ) | 
						
							| 11 | 8 9 10 | mp2an |  |-  ( aleph ` (/) ) e. ran aleph | 
						
							| 12 | 7 11 | eqeltri |  |-  ( H ` (/) ) e. ran aleph |