Description: Equality of the first members of equal alternate ordered pairs, which holds regardless of the second members' sethood. (Contributed by Scott Fenton, 22-Mar-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | altopth1 | |- ( A e. V -> ( << A , B >> = << C , D >> -> A = C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | altopthsn | |- ( << A , B >> = << C , D >> <-> ( { A } = { C } /\ { B } = { D } ) ) |
|
2 | sneqrg | |- ( A e. V -> ( { A } = { C } -> A = C ) ) |
|
3 | 2 | adantrd | |- ( A e. V -> ( ( { A } = { C } /\ { B } = { D } ) -> A = C ) ) |
4 | 1 3 | syl5bi | |- ( A e. V -> ( << A , B >> = << C , D >> -> A = C ) ) |