Description: Equality of the second members of equal alternate ordered pairs, which holds regardless of the first members' sethood. (Contributed by Scott Fenton, 22-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | altopth2 | |- ( B e. V -> ( << A , B >> = << C , D >> -> B = D ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | altopthsn |  |-  ( << A , B >> = << C , D >> <-> ( { A } = { C } /\ { B } = { D } ) ) | |
| 2 | sneqrg |  |-  ( B e. V -> ( { B } = { D } -> B = D ) ) | |
| 3 | 2 | adantld |  |-  ( B e. V -> ( ( { A } = { C } /\ { B } = { D } ) -> B = D ) ) | 
| 4 | 1 3 | biimtrid | |- ( B e. V -> ( << A , B >> = << C , D >> -> B = D ) ) |