Metamath Proof Explorer


Theorem altopthg

Description: Alternate ordered pair theorem. (Contributed by Scott Fenton, 22-Mar-2012)

Ref Expression
Assertion altopthg
|- ( ( A e. V /\ B e. W ) -> ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) )

Proof

Step Hyp Ref Expression
1 altopthsn
 |-  ( << A , B >> = << C , D >> <-> ( { A } = { C } /\ { B } = { D } ) )
2 sneqbg
 |-  ( A e. V -> ( { A } = { C } <-> A = C ) )
3 sneqbg
 |-  ( B e. W -> ( { B } = { D } <-> B = D ) )
4 2 3 bi2anan9
 |-  ( ( A e. V /\ B e. W ) -> ( ( { A } = { C } /\ { B } = { D } ) <-> ( A = C /\ B = D ) ) )
5 1 4 syl5bb
 |-  ( ( A e. V /\ B e. W ) -> ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) )