Description: Alternate ordered pair theorem. (Contributed by Scott Fenton, 22-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | altopthg | |- ( ( A e. V /\ B e. W ) -> ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | altopthsn | |- ( << A , B >> = << C , D >> <-> ( { A } = { C } /\ { B } = { D } ) ) |
|
| 2 | sneqbg | |- ( A e. V -> ( { A } = { C } <-> A = C ) ) |
|
| 3 | sneqbg | |- ( B e. W -> ( { B } = { D } <-> B = D ) ) |
|
| 4 | 2 3 | bi2anan9 | |- ( ( A e. V /\ B e. W ) -> ( ( { A } = { C } /\ { B } = { D } ) <-> ( A = C /\ B = D ) ) ) |
| 5 | 1 4 | bitrid | |- ( ( A e. V /\ B e. W ) -> ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) ) |